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SHOCK HYDRODYNAMICS AND BLAST WAVES* I 
I 
I 

By H. A. Bethe, K. Fuchs, J. von Neumann, R. Peierls, and W. G. Penney 

I. RIEMANN METHOD 

Lectures by J. von Neumann 

>I 
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In this treatment we shall consider the hydrodynamics of compressible fluids. In the applications 
in whichwe are  most interested, the motions are  so rapid that there is not sufficient time to transfer 
an appreciable amount of momentum or energy across streamlines. Therefore we are  justified in 
neglecting viscosity and heat conductivity. 

is the coefficient of heat conductivity, J is the mechanical equivalent of heat, T is the temperature, 
g is the gravitational constant, and u is the velocity of the fluid. In all the applications that we are 
interested in, this approximation is really satisfactory. For example, if iron were accelerated from 
rest to lo5 cm/sec velocity in 10 cm, and if the gradient of the temperature gradient were 1000°C/cm2, 
then the heat conduction term would only be 1/500th the value of the kinetic term. 

neglecting dzddx2 in comparison with the pressure gradient. Here is the usual coefficient of vis- 
cosity. If the pressure gradient is 105 bars/cm and the gradient of the velocity gradient is 104/sec/cm, 
then for water neglect of viscosity corresponds to neglecting a term of the order of 200 in comparison 
to a term of the order of 1011. (See Durand' for a discussion by G. I. Taylor of the effect of viscosity 
and heat conduction on the sharpness of a shock wave.) 

Neglecting heat conductivity assumes that K J d b / d x 2  is small compared to (pu2/g) du/dx. Here K 

4 

I However, it is somewhat more difficult to justify the neglect of viscosity. This corresponds to 
1, 

1. EULERIAN AND LAGRANGIAN FORM OF THE EQUATIONS 

There a re  two ways of describing a hydrodynamical ensemble. In the Eulerian system, we consider 
the conditions of pressure, p; density, p ;  temperature, T; etc., of the fluid passing a fixed point in 
space. In the Lagrangian system, we see how these conditions of the fluid change with time when we 
follow the motion of the individual particles. Let us derive the one-dimensional equations of motion 
for the two systems. 

Lagrangian Form of Equation of Motion 

Each particle is designated by a value of the symbol s. Here f can correspond with the position 
of the particle at the time zero, or  with any other arbitrary convention. At any time, t, the position of 
this particle is designated by x(f,t). The motion of a particle must satisfy Newton's equation- 

M d2x/dt2 = F ( 1) 

5 
c 

Here, our particle consists of the fluid elements lying between f and f + df. The mass of this particle 
is M = podf. The force acting on it in the x direction is the pressure at f minus the  pressure at 
5 + df,  or 

*Notes wxitten by J. 0. Hirschfelder. 
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, (3) 

Here we are  using the usual  hydrodynamical convention of letting the total derivative with respect to 
time mean that we are  following the motion of the individual particles. 

, *  

Eulerian Form of Hydrodynamical Equation: ’ 

properties of a fluid passing a fixed point. Let u(x,t) be the velocity of the fluid relative to the fixed 
point. Then u = dx/dt and 

The Eulerian form of the hydrodynamical equations is convenient when we are concerned with the 

d2x/dt2 = du/dt = au/ a t  + (Mdt) ( au/ ax) = au /  a t  + u( a u /  ax) (4) 

In order to derive the equation of motion, we consider as our particle those fluid elements which lie 
between x and x + dx at the time t. This particle-has the mass, M = p dx. The force acting on this 
particle in the x direction is the pressure at x minus the pressure at x + dx or F = - (ap/ ax) dx. 
Substituting these relations into Newton’s equation 

* I  

_. au/ a t  + u (au/  ax) = - (l/p) (ap/ ax) (Euler) (5 1 
< 

The equation of continuity can be derived in the following manner. Consider the fluid entering and 
leaving a little element of volume lying between x and x + dx. In a length of time, dt, the mass of 
material entering from the left is pu dt and the material leaving from the right is (pu  + [a(pu)/ x ]  
dx ) dt. Thus the net increase of material in this element, (ap/ at) dx dt, is - [a@u)/ax] dx dt and 
the equation of continuity is 

ap/ a t  = -a(pu)/ax (6) 

A third equation that we require is the conservation of energy. The work which is done in unit time on 
the fluid flowing between x and x + dx is equal to the pressure times the velocity at x minus the 
pressure times the velocity at x + dx or  - (a /  ax)(up) dx. Therefore the work done on a unit volume of 
gas in unit time is - ( a /  ax)(up). However a unit mass of material occupies a specific volume, V = l/p. 
Thus the work done on a unit mass of material in unit time is - V ( a /  ax)(up). By the conservation of 
energy, this work must be equal to the rate of change of kinetic,plus internal energy of a unit mass of 
material. The energy of the system, E (per unit mass) is given by the relation 

Thus the equation of conservation of energy is expressed by 

1 1 
, (d/dt) ( z.u2 + Eint) = [ a/ a t  + u( a/ ax) ] ( u2 + Eint) = v ( a /  ax) (up) 

, *  ’ , .  

2. BEHAVIOR OF ENTROPY, RELATION ‘WITH MECHANICS, THERMODYNAMICS, 
AND IRREVERSIBILITY 

In addition to the equation of motion and equation of continuity, we have the equation of state and 
the equation of conservation of energy. These four kuations should be sufficient to determine the 
four variables p, p ,  T, and u as functions of position and time. However, there was considerable 
confusion up to a very few years ago as to whether the fourth equation should be the conservation of 
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energy or  the constancy of entropy. As we skll show, as long as the fluid motion involves no abrupt 
changes in pressure o r  velocity, the conservation of energy implies the constancy of entropy and vice 
versa. But whenever an abrupt change, o r  shock wave, occurs the conservation of energy leads to a 
definite change in the entropy. 

Constancy of Entropy with Time for a Fluid Element (Assuming No Shock Waves) 

state are reversible and the entropy of a fluid element will remain constant with time. The fluid 
elements do not remain in equilibrium during the motion in which the fluid passes through a shock or  
when the motion is too rapid to maintain either chemical equilibrium or  to maintain equilibrium in the 
rotational and vibrational degrees of freedom of the molecules? The fact that entropy is conserved 
whenever the changes in state are  reversible may be verified in the following manner. The internal 
energy can be expressed in terms of the specific volume and the entropy, S (per unit mass). Thus the 
equation of conservation of energy' becomes: 

* I  

In fluids whose elements remain in thermodynamical equilibrium during the motion, changes in 

and carrying out the indicated operations 

u [(au/at) + u(au/ax)] + ( a  Eint/aV)s [(aV/at) + ~ ( a V / a x ) ] ~  

+ ( a  EinQ a S)v [(as/ a t  + u(aS/ ax)] = - Vu( ap/ ax) - Vp( au/ ax) (9) 

But from the equation of motion (5) 

u [( au/ a t )  + u( au/ ax)] = - v u (ap/ ax) (1 0 )  

And from the equation of continuity (6) 

Then remembering that for a reversible change the internal energy is the usual  energy, E, of 
thermodynamic ~ y s t e m s , ~  it must have the properties 

(%) = T  
V 

Thus Eq. 9 becomes 

o r  

T [ ~ + u ~ ] = T ~ = O  ds 

. .  
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From Eq. 
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5 it is apparent that the er.-:opy of each par--,le does not change with Lne. If the 
entropy had the same value throughout the whole fluid at any time, it must maintain this value for all 
subsequent times. 

3. RIEMANN’S METHOD OF INTEGRATION (ONE -DIMENSIONAL AND ISENTROPIC) 

Riemann developed a very useful method of integrating the equations of motion for one-dimensional 

Let us suppose that initially, the specific entropy throughout the fluid is a constant, So. Then, 

I 
isentropic flow  problem^.^ 

from the theorem of the last section, we know that for all subsequent time the specific entropy of the 
system remains SO. (This is not true after a shock wave has developed, but we shall consider such 
cases later.) Since the entropy is constant, we can write the equation of state in the form of the 
adiabatic 

I 

I P = P(V,SO) (16) 

The equation of motion (5) becomes 

And the equation of continuity 6 is 
. 

If we consider any function u(V,So), then by virtue of Eq. 18 and the constancy of entropy throughout 
the system, 

Adding together Eqs. 17 and 19 

( A + U a x )  a ( u + u )  = - v  au 

Riemann’s trick5 was to choose u so that 

-, (E) = . av s ax 

For in this case the right-hand side of the equation becomes simply 

.(E) - ( u + u )  a 
av so ax 

This is accomplished by .letting 
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Here c (V,So) is the local velocity of sound 

The value of u itself is obtained by integrating Eq. 23 

From the equation of state of the adiabatic, both c and u may be determined'as functions of V. 
Restricting ourselves to this definition of u, Eq. 20 becomes 

a a (9 ax aV so (u +u) = - c - (u + a )  ( ; + u g ) ( u + u ) = + V  a 

Or transposing 

ax 

Similarly if we had subtracted Eq. 19 from Eq. 17'we would have obtained the relation 

These equations have a simple interpretation provided that we change our frame of reference. 
Instead of observing the conditions of the fluid at a fixed point as in the Eulerian system, or following 
the motion of the individual particles as in the Lagrangian system, we now observe the changes which 
take place in the fluid when our frame of reference moves with the local velocity of sound with respect 
to the moving fluid. In order to move with the velocity of sound in the minus x direction, our frame of 
reference must have the velocity u - c. In order to move with the velocity of sound in the x direction, 
our frame of reference must have the velocity u + c. 

Equation 27 states that if we start at any point in the fluid and move with a velocity u + c, we will 
find that the quantity u + u remains constant. 

Equation 28 states that if we start at any point in the fluid and movetwith the velocity u - c, we 
will find that the quantity u - u remains constant. 

Thus if we know the velocity and density at all points in the fluid at some time, these two equations 
serve to define the values of u - u and u + u at any subsequent time. And knowing the values of u - u 
and u + u, we also know the values of u and a separately. From u and the adiabatic equation of state, 
we can determine the density and the pressure. This in principle forms a complete solution to the 
problems of one-dimensional isentropic flow. 

and cannot be generalized to two or three dimensions. 

4. RIEMANN'S METHOD APPLIED TO A GENERAL CASE AND TO 

It should be emphasized that the Riemann method is only applicable to one-dimensional problems 

AN DEAL ONE -DIMENSIONAL GAS 

Method of Numerical Integration in General Case 
' The Riemann method can be used in.the following manner to integrate numerically the equations 
of motion. Suppose that at the time t = 0 we are given the velocity, u, and the specific volume, V, at 
a set of points XI, x2, ..., I. We are  also given the equation of the adiabatic. W e  proceed asfollows: 
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First, we use the equation for the adiabatic to calculate 

and then calculate 

V 

From V (xi, t = 0) and the above relationships we determine 

c (Xi, t = 0) 

U(Xi, t = 0) 
i = 1, 2, ..., n 

./ -._ 

' I  _ .  
r 

From u (xi, t = 0) and the above we determine the two sets of numbers 

-7 

Figure 1 

In the Riemann method we try to construct the lines along which u + u = f i  and u - u = gp Figure 1 
shows what such a mesh might look like when we integrate numerically. It is easy to find the points 
of intersection graphically. From each point, xi, we draw two lines one with the slope U(Xi, t = 0) + 
c(xi, t = 0) and the other line with the slope U(Xi, t = 0) - C(Xi, t = 0). Along the first line f i  remains 
constant, along the second gi remains constant. The places where these lines intersect forms the 
points x12, x23, ... At these intersections, we know the value of f and g. 

1 
4x12, t12) = 5 (g2 + fl) 

' 4  

k 
4 

At x12 
c.. 

C 
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Knowing the values of u at the intersection points, we can determine the corresponding values of V, and 
of c. Then using these new values of c and u we can again draw two lines through each intersection point 
and determine a new set of intersection points, etc. And in this way we can carry out the whole inte- 
gration. 

It is interesting to notice that by this method we cannot obtain any information about the fluid, ; 
motion outside the rough triangle bounded by the line f = f l  and by the line g = gn. The conditions of 
the fluid motion within this triangle a re  completely unaffected by the conditions of the fluid outside the 
triangle. 

Application of Riemann's Method to Ideal One-dimensional Gas 

The Riemann method is particularly useful when the fluid satisfies the ideal gas form of adiabatic* 

Then, since 

and 

Since VO is arbitrary, it is convenient to set VO = -. The value chosen for Vo cannot affect any physi- 
cal properties of the fluid. Then 

(I= + (+J c (33) 

If y should equal 3, there are many simplifications which appear. In this case, the velocity of 
sound is proportional to the density, = 1 and (I = +c. Most substances under very high pressure 
approximately follow the ideal-gas adiabatict with y = 3. Under these conditions f = u + c is constant 
along the curve whose slope is u +.c; and g = u - c is constant along the curve whose slope is u - c. 

2 
3 

*For many applications it is useful to take the adiabatic in the form 
i 

P = k' (So) P Y  + Po(S0) 

This does not change the resultant fluid motions since the hydrodynamical equations only involve 
pressure differences. 

For other purposes, 
p(V - b)" = k" (So) 

is a useful form. 

between 5/3 and 1. For example any substance satisfying the equation of state pV 3/y' = aT X 
3(y' - 1)/2y' has the adiabat, p = (const)p 3. 

?This value of y is not to be confused with the true ratio of specific heats, y',  which varies 
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Thus f is constant along the line , , 

And g is constant along the line 

Solving these equations simultaneously 

AECD-2860 

x = a(f) + f t  

b(g) - a(f) 
- g + f  

f b(g) - g a(f) 
- g + f  

t =  

X =  

1 
2 u = -  (g + f) 

c = , ( g - f )  1 

, .  

i , + ’ ,  

i . - .  . .  . .  . 

. , <  . .  . 
. . I .  

. .  

These four equations form a complete parametric solution to the equations of motion. If we know the 
velocities and densities at the time t = 0, we can determine a(g) and b(f). Knowing a(g) and b(f), we can 
solve Eqs. 36 and 37 simultaneously to determine the value of g and f for any desired value of x and t. 
Knowing g and f we can use Eqs. 38 and 39 to determine u and c. Then substituting c into Eq. 31 we get 
V and hence all of the properties of the fluid motion. 

Darboux obtained analytical solutions to the equations of motion for all values of y such that 
2m + where m is an integer. These values lie in the useful range of y. The second and third are Y=- 

of practical interest representing very accurately an ideal monatomic gas and air ,  respectively - J “  

In his solutions for x and t, Darbouxe obtained expressions involving derivatives of a and b up to the 
order m - 1. Darboux’s equations correspond to the simultaneous solutions of the following para- 
metric equations: 

x = -a (s)u 
,. 

Here as  before a is an arbitrary function of u + Q and b is an arbitrary function of u - u. * 
r -  

c 
- 7  

- -  
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5. RIEMANN'S METHOD APPLIED TO DISTURBANCE COMING FROM ONE DIRECTION 
AND TO FORMATION OF SHOCK WAVES 

The Riemann method is particularly easy when a disturbance comes from one direction. Let us 
suppose that at time, t = 0,  the fluid at points such that x is positive is at rest  and the fluid correspond- 
ing to negative values of x is disturbed. In this case we shall show that the lines of constant u + u are  
straight lines and all along these lines the values of u and o separately remain constant. We suppose 
that the fluid satisfies the ideal gas adiabatic so that - 

I 

- .  . i *_ 

-7 

c 
0=- 2 c  

Y - 1  

Figure 2 illustrates the problem. 

. -  
Figure 2 

We must distinguish three regions. In region I, the fluid is undisturbed. In region 11, the 
disturbance is coming from both directions. In region III, the disturbance is only coming from the 
negative x direction. 

2 Region I is bounded by the line dx = codt In region I, u = 0, c = co, and (I = - 
At any intersection of points in region I such as (XI, t l) 

- 1 co. 

2 u + u = + -  y - l C 0  

co. The lines of constant u - u and constant u + cr in this 2 Thus u remains zero and oremains - 
Y -  

region, as constructed in the Riemann method, a r e  therefore straight lines. 
In region 11, the disturbance may be quite general. 
In region III, the lines of 'constant u + o must be straight lines since all of the lines of constkt  

> I  

u - o which they intersect have the same characteristic value, u - 0 = - 
(xg, tg) along the line of slope u + c characterized by u + o = f i  we have 

co Thus at any point m* 
e-- 

- -  

- .  
- -  
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u = f (ti - 2 TJ co 

The line for which u + a = f i ,  therefore has the slope 

(47) 

Since this slope does not change throughout region 111, it follows that the lines of constant u + a are  
straight lines. It is important to note that the lines for different values of u + u = f i  have different 
slopes. If two of these lines approach or  intersedt each other, the pressure gradients become large 
and then infinite and a shock wave occurs. The Riemann method is no longer applicable when these 
lines intersect. 

In region 111, the lines characteristic of u - u have the slope 

Since these lines cross lines having different values of fi ,  it follows that the lines of characteristic 
u - a may be curved in passing through region 111. 

Formation of Shock Waves (Problem of a Moving Wall) 

If the disturbance is mild, it takes a very long time for the shock wave to develop; if the disturbance 
is violent, the  shock wave forms in a short time. The Riemann method can be used to show how they 
originate. 

Consider a wall or  piston which is set  into motion at time t = 0 and propagates a disturbance in 
the gas in front of it. The position of the wall at any time is given by the relation, 

The formation of shock waves occurs quite generally as the result of any disturbance in a gas. 

1 

t < O  xwall = 0 

= W(t) t 5 0 

For the sake of simplicity, let u s  restrict the motion of the piston to subsonic velocities. In this 
case only the lines of slope u + c can come from the wall. Figure 3 illustrates the problem. The 
lines of constant u + u are  shown. Initially the gas is at rest and has a velocity u = 0 as well as a 
constant velocity of sound, c = CO. We suppose that the gas satisfies the ideal-gas adiabatic so that 

a=  - 2c A s  in the previous problem we can construct the line dx = co dt. To the left of this line 
dW 

the gas remains undisturbed. On the surface of the wall u = -. dt At any point on the surface of the 

wall, u = a = - 7 co since the lines of constant u '- a arise in the undisturbed part of the fluid. 

Thus on the surface of the wall 

y - 1' 

Y 1' 

2 c 0  dW a= - +- 
y - 1  dt 

. .  . 
(49) 

8 
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X t  

I 
- dx = c,dt / 

I I / 

Figure 3 

y + l d W  u + c = co + -- 2 dt 

11 

~ 

- *  

dW Therefore, whenever - is positive, c > co and the dedsity of the gas in the neighborhood of the  wall is 

increased, if - is negative, the gas i n  the neighborhood of the wall is attenuated. 

The fluid lying to the right of the line dx = co dt and above the wall corresponds to the fluid in 
region 111 of the last problem. We therefore know that the lines of constant u + u emanating from the 

wall are straight lines. A line starting from a point, (x', t'), where - is positive and small wil l  have 

a slope, u + c, less than the slope of a line starting from a point, (x" , t" ), where - is' larger. These 

r -  

5 dt dW 
dt - %  

r 

dW . 
dt dW 

dt 

'- .. 

two lines must therefore meet at some point (x", , t"' ). Since these two lines have different velocities 
of sound, they also have different densities. So as they approach each other a progressively sharper 
density gradient develops. This gives r ise  to a shock wave and under such conditions the Riemann 
method is no longer valid. From the above, it is clear that the less the piston or wall is accelerated, 
the smaller will be the difference in slopes of the lines of constant u + u and the longer time it will 
take for the lines to come together to form large density gradients and shock waves. 

From Fig. 3 and Eq. 51 it is clear that: (1) Whenever the piston is accelerating, the lines of 
constant u tend to come together to form shock waves, and (2) Whenever the piston is decelerating, the 
lines of constant u tend to go apart and not form shock waves. These are special cases of the more 
general theorem that shock waves tend to be formed (always will be, i f  given sufficient time) when a 
gas is compressed but not when it is being rarefied. In order to get shock waves, it is not necessary 
for there to be a discontinuity of the motion of the wall. 

7-39 . 013 



, 
I 

I 

I I 

1 

I 

1 

i 
I 
I 
I 
I 
I 

i 

I 

I 

i 

i 

shock wave formed in corner \ 

t 
X 

Figure 4 

* 
-1 

AECD-2860 

Consider the following examples illustrated i n  

Fig. 4. 

(a) Push piston into gas suddenly. Get shock 

wave immediately at wall. 

(b) Push piston into gas gradually. Get shock 

wave later. 

(c) Withdraw piston suddenly from gas. No shock 

wave is formed. Pressure and density gradients get 

less steep as you go into gas. 

II. SHOCK WAVES AND DISCONTINUITIES (ONE -DIMENSIONAL) 

Lecture by J. von Neumann 

6. HUGONIOT'S EQUATIONS FOR SHOCKS . 

There are two different types of discontinuities in a fluid. In the first kind, there is no flow across 
the boundary and there is no pressure difference on the two sides of the boundary. In this case, the 
boundary is just a streamline separating two phases of fluid which h a y  be made up of different chemi- 
cal substances o r  the same substance but having different temperatures and densities on the two sides 
of the boundary, etc. However, the kind of discontinuity in which we are most interested involves the 
flow of material across a boundary in which a sharp change in pressure, density, and velocity takes 
place. 

Let u s  postulate the existence of a plane shock wave and examine the conditions of its propaga- 
tion.' First we must define the following quantities: 

U = velocity of shock wave 
D1 + U = velocity of matter before passing through shock wave 
D2 + U = velocity of matter after passing through shock wave 
p , p = density of fluid before and after passing through shock wave 
V 1  , V2 = 'specific volume of fluid before and after passing through shock wave 
p1 , p2 = pressure before and after passing through shock wave 
E1 , E2 = specific internal energy before and after passing through shock wave 

M = mass of material per unit cross-sectional area flowing through the 
shock wave in unit time 

I 

D1 I D2 
I 

P1, P1, E1 I P2, P29 E2 
I 

I 

I 

Shock 
Wave . 

- i. 

- s  
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k 
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In order that this discontinuity can exist we must satisfy the following equations: 
1. Conservation of matter. 

2. Conservation of momekum. 

1 .  , .  . (53) 

This arises from Newton's equation. Consider the mass of fluid, M, passing through the shock 
wave per unit area and unit time as forming a particle. Here p i  - p2 is the force pushing the particle 
through the shock wave and M(D2 - D1) is the rate of change of momentum of the particle. . . 

3. Conservation of energy 

This equation simply states that the work which is done on the fluid per unit area and time, Le., 
Dlpl - D2 p2, is equal to the rate of change in its energy. Here M S / 2  is the kinetic energy and ME is 
the internal energy of the fluid passing through the shock wave. Because of the equation of conserva- 
tion of momentum, we would get nothing different if we considered the absolute velocity of the fluid 
rather than its velocity relative to the shock wave. 

From the equations for conservation of mass and for momentum, Eqs. 52 and 53 it follows that 

But by virtue of 'the equations for conservation of momentum and matter 

Thus Eq. 57 becomes 



I 
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And therefore 

@1 + P2)/2 = (E2 - E1)/(V1 - V2) (61) 
\ 

For weak shocks p = - (aE/ aV)S and the entropy on both sides of the,shock wave becomes asymptoti- 
cally equal. 

7. BEHAVIOR OF ENTROPY, INTERPRETATION (THE RAYLEIGH-TAYLOR THEORY) 

The characteristics of shock waves can be seen more clearly if we consider the special case 01 
an ideal gas. In this case* 

Therefore Eq. 61 becomes 

It is convenient to let 

This equation is called the Hugoniot shock adiabatic, although this is obviously a misnomer because 
entropy is changed in passing through the shock. 

If the shock were weak, e would be almost unity. It is interesting to expand Eq. 67 for q in powers 
of ( S -  1) 

q= 1 + (W ( 4  - 1) - (112~) (1 - 1ly) ( 4  - 112 + (1/4y) (1 - ~2 ( t - 113 - ... (68) 

This series for q agrees through the term in ( 4  - 1)2 with the corresponding series expansion which we 
would get for the compression ratio, qno shock, if  we allowed the fluid to pass gradually from the 
region of pressure p i  to pressure p2 

1 no shock = 4 'Iy = 1 + (I/?') ( 6 1) (1/2 Y )  (1 - ( '$ - 
+ (1/6 y )  (1 - v Y )  (2 - 11~) ( e  - 113 - ... (69) - 

*For an ideal gas, pV = RT, Cp - C, = R, and CdCv  = y 
It follows that: E = C,T = [cV/(cp - cV)] pv = pv/(y - 1) 

z 
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Since Eq. 69 corresponds to the adiabatic with no change in entropy, it is clear that some entropy change 
must take place in a shock. The fact that Eqs. 68 and 69 agree so well corresponds to the fact that very 
little entropy change takes place in a mild shock. 

constant value 
For violent shock waves, where p i p 1  = 4 is large, the compression ratio, rl = p d p 1  approaches a 

This limiting value becomes larger as y becomes smaller. This is seen in the following table 

Y 1 1.2 1.4 1.67 3.0 

( '?)larget= (Y+ l ) / ( ~ -  1) 00 11 6 4 2 

The fact that the compression ratio cannot exceed a fixed value in passing through a shock, is quite 
contrary to the behavior of fluid which passes through the same pressure drop without passing thraugh 
shocks. , +  

The entropy of an ideal gas cak be written in the form* 

Therefore the change in entropy in passing through the shock wave can be written 
Y 

AS = S2 - S1 = Cv [log(pzVz) - log @1V;)] = y Cv log (41/yq-1) (72) 

The change of entropy is always positive if the fluid flows from a region of low density into a region of 
higher density, i.e., rl is greater than unity. For this case 4 is also greater than uni$y and the fluid , 

flows from a region of low pressure to a region of greater pressure. For weak shocks, the change in 
entropy is very small as we can see by expanding Eq. '72 with the help of Eqs. 68 and 69 

AS = y cv log [I + (1/12 y )  (1 - 1/31 ( 4  - 113 + ...I = (cv/12) (1 - 1/31 ( 4  - 113 + ... (73) 

This entropy change is negligible unless 4 > 2. 

uncertainty as to whether entropy should be conserved in the shock. We now know that it i s  energy 
which must be conserved, and we are not greatly concerned over the fact that the entropy changes. 
However it is always necessary for the fluid to flow through the shock wave in such a direction as to 
increase entropy. This means that in flowing through a shock wave, matter flows from a region of low 
density to a region of higher density. No shock waves are possible when matter flows from a dense to 
a less dense region, since this would cause a decrease in entropy. After passing through a shock wave, 
the fluid becomes hotter than it would if it had arrived at the same pressure without passing through a 
discontinuity. 

Shocks a re  connected with the nonlinear character of the hydrodynamical equations. In simple 
physical terms, they may be attributed to the fact that the velocity of sound is not a constant, but 
increases with the pressure. Suppose we produce a pressure wave moving in the x direction. This 
situation is shown in Fig. 5. The regions of high pressure at the top of the wave travel with a velocity 
greater than the velocity in the pressure troughs. The front of the wave gradually gets steeper and the 
back of the wave gets less steep. After sufficient time, the wave front gets infinitely steep and a true 
mathematical discontinuity is present. 

The problem of shock waves w a s  most confusing to the early workers in this field because of the 

Of7 
1 
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t = O  t = l  t = 2  

P F  pfA A 
X-- X-- X- 

Figure 5 

Shock waves were discovered in 1860 by Riemann, they were rediscovered in 1890 by Hugoniot and 
forgotten again. Finally in 1910 Lord Rayleigh and G. L Taylor started the investigation which has led 
to our present treatment of the subject. They were very much concerned over the appearance of a. 
mathematical discontinuity. in the fluid motion. They made a careful study of the conditions in the 
fluid in the neighborhood of the shock wave. When they no longer neglected heat conduction and vis- 
cosity, they obtained a finite width for the shock wave in which the pressure and density of the fluid 
changes very rapidly but not discontinuously. A mild shock wave, such as in front of the nose of a 
bullet, has a width of the order of cm. For a violent shock, the width is much less. 

8. COLLISIONS BETWEEN GAS MASSES 

One of the best examples of one-dimensional shocks is the collision between two gas masses. If 
the two gases are  initially at the same pressure, at the time of impact two shocks waves will be fo rma ,  
one in each gas. If the initial pressures are unequal, there is the possibility of the shock wave in the' 
high-pressure gas being replaced by a rarefaction. After the collision, the pressure and the velocity 
of the gases at the interface must be continuous. However, the density of the gases need not be the 
same on the two sides of the interface. 

In case the initial pressures in the two gases are different, there is a critical ratio of initial 
pressures. If the difference in initial pressures is smaller than the critical value, there will still be 
two shock waves as in the case of equal initial pressures. However, if the difference in initial pressures 
is larger than the critical value, the shock wave in the high-pressure gas is replaced by a rarefaction. 
The high-pressure gas expands at constant entropy and the Riemann method can be used to determine 
its conditions of flow. The shock-wave method given here can be used to determine the conditions in 
the low-pressure gas. The problem is completely determined by the requirement that the velocity and 
pressure must be equal on both sides of the interface. This type of problem can be solved but it is 
usually impossible to obtain any analytical solution. 

venient to specialize still further and let both gases be ideal and have the same value of y. However, 
the gases may have different chemical compositions and densities. We suppose that before the colli- 
sion, the pressure, velocity, and density is uniform in each of the two gases. The gas masses extend 
infinitely far in the plus and minus x directions respectively so as to avoid difficulties arising from end 
effects. To realize this experimentally it would be necessary to have the gases enclosed in long tubes 
with thin membranes at each end. These tubes would be thrown together and at the instant of impact 
the membranes would be removed. The mathematical treatment is much simpler. 

Let us consider the simpler problem of the two gases having the same initial pressure. It is con- 

c 
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Figure 6 

Figure 6 illustrates the conditions. The problem is to find the velocity of the shock waves, the 

Let us  designate conditions in gas A by the subscript a. Initially, the pressure, velocity, and density 
velocity of the interface, and the pressure at the interface. 

in gas A are  p, ula, and p la  respectively. The velocity of the shock wave is Ua. We can use the qua: 
tions which we derived to consider the conditions'on the two sides of the shock wave 

But from Eqs. 52 and 56* 

*Notice the use of the minus sign in the following equation. The necessity for it ?s clear from 
Fig. 6 since the material in crossing the shock wave, continues to travel in the negative x direction. 

, 

" p  
, c49 
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Similarly if we designate conditions in gas B by the subscript b 

Now we require that the material on both sides of the interface has the velocity u' and the pressure 
p'. The velocity of the interface is then also u'. We shall try to satisfy the equations with the pressure 
pi and the velocity u' for all the material of both gases after the passage of the shock waves. Thus 

U' = U2a = U2b 

P' = P2a = P2b = Pea = Peb 

We must then solve the four equations, 82, 86, 87, and 88 for the four unknowns ea) 'Ia, eb) ?Ib. From 
Eq. 88 it is clear that 

(87) 

(88) 

s =  = sb (89) 

Substituting this value of # into Eqs. 82 and 86 

Or making use of Eq. 90 and letting 

But Eq. 94 is a simple quadratic equation for 4 having the solution 

(95) 4 = 1 + (B/4) (y  + 1) 2 d B y  + (B2/16) (y  + 1)2 

Since B is always positive, both of the roots of Eq. 95 are real and therefore might correspond to 
solutions of the hydrodynamical equations. However, if we took the negative sign for the square root, 
.$ would be less than unity and the entropy would decrease when the material passed through the shock 

a i  
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waves. *This is obviously impossible so we must use the positive sign. All  the properties of the colli- 
sion process are then completely determined. 

* a  

III. TWO-DIMENSIONAL HYDRODYNAMICS 

Lectures by von Neumann and Peierls an! report by Fuchs 

9. STATIONARY TWO- AND THREE-DIMENSIONAL FLOWS, AVORTICI'rY (BERNOULLI'S 
EQUATION) 

The problem of two- and three-dimensional flows are considerably more difficult than the corre- 
sponding one-dimensional ones. Two- and three-dimensional problems must be treated by special 
methods which are applicable only to a limited class of problems. 

In vector notation, the equation of motion is 
r 

au /a t  + E  vu = - (l/p)vp (96) 

and the equation of continuity is 

ap/at  = - v . @E) 

Here E is the velocity. 
Flow problems naturally divide themselves into two classes: those involving vortices and those 

which are irrotational. Only a limited number of vortex problems can be solved and we will not con- 
sider. them here. Whenever a fluid has a irortex, its angular velocity, w ,  is different from zero i n  some 
region. Since w = (l72)Vx'g, the requirement that there be no vorticecis equivalent to requiring the 
curl of the velocity to be zero. But any v e c k  whose curl is zero is the gradient of a scaler. There- 

- 
i 

h - fore we can set  
c . 

~ -. - u = -v+ Irrotational Flow 198) 

Here + is called the velocity potential. 
If a flow is initially vortex-free it will remain vortex-free if the pressure is a funCtioh of the 

density alone. Therefore there will be no vorticity generated as long 'hs the flow remains isentropic. 
Nonconstant shocks will change entropy in a nonuniform manner and vortices c,an be formed. A plane 
shock is essentially a problem' in one-dimensional flows and does not produce vortices. However, 
Hadamard showed that any shocks except tliose having either plane or spherical symmetry produce 
vortices. 

equation when we make use of the velocity potential for irrotational flows; Eq. 96 becomes 

. a  

The three scalar equations corresponding to the vector equation of motion can be reduced to one 

- (ahat)  (v+) + v(! - g/2) = - (l/p)vp .. (99) 
9 1  

or inverting the order of differentiation for the first term 
:, 

-v(a+/at) +v(grad+)2/2 = - (l/p)vp . 
i 

This is equivalent to the equation . - ,  

-d(a+/at) + d(grad +12/2 + (l/p)dp = 0 (101) 

And integrating along any path 1 

' 
sdp/p = a + / a t  - (1/2) (grad@)2-+ (lL2)li 

e -  

. .  
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Here I is the constant of integration. For a steady state a@/ a t  = 0 and we get Bernoulli’s theorem 

Sdph + (1/2) (grad @I2 = (1/2)n (103) 

Here n is a constant which can be determined by knowing the velocity and pressure at some point in the 
fluid. Usually I is evaluated from the pressure at a stagnation point where the fluid velocity is zero. 

For an ideal gas, we can evaluate jdp/p and obtain an upper limit to the velocity of the flow 

P = k(So)pY A (1W 

ldp/p = [yk(S&y/(y - I ) ]  p (y-l) / Y  [yk(sO)/b - I)] p y - l  (105) 

But the vlelocity of sound, c, is given by , 

c=d-=+GiFi ‘ (106) 

so that 

jdP/P 5 ea/(, - 1) (107) 

Ana Bernoulli’s equation becomes 

(Velocity)2 = = [ Y ( y  - 111 [c: - c2] 

Here co is the velocity of sound at  a point where the flow velocity-is zero. 
The equation of continuity is also important. If we introduce the velocity potential into Eq. 01 

app/at = v *  ( p  v 0 )  = P V * V ? J  + vp-04 ( 1 W  

For a steady state, qp/ a t  = 0 and 

9 ’ 9 9  + Vln p * v 9  = O  (110) 

Sometimes the velocity potential may be determined in the following manner. The density is 
eliminated from Eq. 110 by making use of the implicit dependency of a/, on density in Eq. 103. 
This leads to a single differential equation involving 0 done. The equation is very complicated and 
honlinear. When the effect of compressibility is small, it is possible to use this equation to obtain 

I g&d approximations for the velocity potential. 

10. BTATIONARY TWO-DIMENSIONAL FLOWS: NOEZLE FLOWS 

The steady-state flow through a nozzle provides one of the simplest examples of the use of the 
Bernoulli theorem. Consider a well-tapered (Laval) nozzleo attached to a large chamber with a large 
cross-sectional area. Suppose that the gas in the chamber is at rest, then the velocity, u, of the gas 
at any point is given by the Bernoulli equation (108) 

J 

..r- 

I 
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And 

Therefore Eq. 108 becomes 

u2 = [2Y/(Y - 111 @O/PO) [I - @/Po)(y-l)/Y] (112) 

However the rate of mass flow through any cross section S of the nozzle, M, must be the same at any 
point in the nozzle. Thus 

M = Spu = constant 

So combining Eq. 112 for the velocity with Eq. 104 for the adiabatic 

(114) 

or rearranging 

This equation gives the cross-sectional area as a function of the expansion ratio. 

I 
The conditions at the throat are particularly 
interesting. Here the cross-sectional area as a 
function of p/po passes through a minimum. In 
order to find the conditions at the minimum, let 
Y = @/P&Y* 3throoru 4 .oo 0 P/PO 1.00 

Figure 8 

Then 

s = (constant) [yz - yY-'1 -v2 
At the throat (use subscript t to designate throat) 
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Substituting this ratio into Eq. 108, the velocity at the throat is given by,the re1 

The density at  the throat is given by the adiabatic 

Pt/Po = [ 2 A Y  + 1)]1/(Y4) 

Using the perfect-gas equation, the temperature at the throat is given by 

And of course 

ti n 

, I , : <  ; . , , 

The above equations apply until the gas has overexpanded so that the pressure in the nozzle is less 

If the nozzle has too large an angle of taper (usually over 30 deg), the gases do not completely f i l l  

If the nozzle is not tapered sufficiently in the neighborhood of the throat, the effect of the turbulent 

than the external pressure. Under these conditions, plane shock waves may be expected.'O 

the nozzle and therefore do not expand as rapidly as might otherwise be expected. 

boundary layer becomes important. Von Karman has shown both theoretically and experimentally that 
under such conditions the boundary layer varies periodically along the nozzle and gives effectively a 
succession of constrictions, and the gas suffers a series of plane shocks in passing through this region. 

The problem of gas flow through a straight tube is exceedingly complicated. In this problem the 
flow is determined by the friction due to turbulence in the boundary layer along the surface. In passing 

3 

-5  through the tube, the gas periodically overexpands, suffers a shock wave, and expands again." 
3 

11. STATIONARY TWO-DIMENSIONAL FLOWS: CORNER FLOWS, OBLIQUE SHOCICS, HEADWAVES - "  
OF WEDGES, INTERPRETATION, PITOT TUBE 

Usually when a two-dimensional flow traveling with supersonic velocity collides obliquely with an 
obstacle, it forms an oblique shock wave. This is evident in the photographs of bullets in flight 
(C. I. Taylor has an excellent article on this subject in Durand.u) The shock wave is a plane dis- 
continuity with the material flowing through it obliquely. In discussing the flow, it is convenient to 
consider the shock wave as fixed and the gas moving obliquely through it. By superimposing on the 
whole system a velocity parallel to the shock wave, the problem can be reduced to the one-dimensional 

For example, these shock waves a re  formed on the sharp point of the bullet nose. 
flow through a fixed shock wave. This type of shock wave cannot occur when everything is continuous. 

angle a and departs with the angle p. We assume that the pressure is only a function* of x. This has as 

5 

Figure 9 illustrates the problem of the oblique shock. The fluid hits the oblique shock at the 
* 5- 

-c; . *The equation of motion for v is av/at + uav/ax'= 0. But for a steady state,av/at = 0 so 
that av/ax = 0 and v is a constant. 

.- 
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I 

Figure 9 

a result that v, the component of velocity in the y direction, is constant. A s  usual, we consider only 
the problem of the steady state. In this case, BerhouiliJs theorem is valid for the flows both before and 
after the oblique shock. If we let u be the component of velocity in the x direction, w be the total 
velocity and reserve the subscripts 1 and 2 for the flow before and after the shock wave, 

u1 = w1 cos a u2 = w2 cos B 
v1 = W1 sin a v2 = W2 sin p 

But 

' V I  = v2 

And from the conservation of matter 

so that 

tan B = v2/u2 = (vl/ul) P ~ / P  1 = W P ~ )  tin a = rl t? a 
/ 

The rest of the solution proceeds much as in the case of the plane shocks. 

so that 

But according to the perfect gas adiabatic 

c2 = ( aP/aP)so = yP/P . 

And therefore (making use of Eq. 124) 

u;/c; = (v/r) cr - W ( v  - 1) = (</c) cos2 Q! 

625 
A 
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Jus t  as in the case of the normal plane shock, 

Or solving Eq. 132 for 6 

Substituting this expression for 4 into Eq. 131 

And solving this equation for q 

(y  + 1) (Wl/C1)2 cos2 a! 
2 + (y - 1) '(Wl/C1)2 cos2q a 

9 =  (135) 

As in the case of the normal plane shocks, the fluid must flow across the shock in such a direction 
that p2 is greater than p1; also, the increase in density remains finite no matter how strong the shock. 
For a very strong shock, v = (y  + l)/(y - 1). Thus making use of Eq. 127 and y = 1.4, we find the 
following angles of deflection for a strong shock in air: . 

P - a  

0" 
43 
44 
35 
24 
12 
0 

Subtracting sec2 6 from both sides of this equation 

It is clear from the above table that the deflection, 6 - a, cannot exceed some maximum value. If 
the deflection is greater than this, the disturbance cannot produce a stationary shock. We can find this 
maximum angle of deflection for a given value of the initial velocity, W1, and initial velocity of sound, 
cl, in the following manner: 
Differentiating both sides of Eq. 127 with respect to a 

sec2 6 dp/da! = tan a dr]/da! + vsec2 a (136) 

sec2 /3 d@ - a)/da! = tan a! dv/da + I] sec2 a - sec2 B (137) 

But the condition that 6 - a! should be a maximum or  minimum is for d@ - a)/& = 0. Making use once 
more of Eq. 127 to eliminate p ,  the condition for 6 - a! being a maximum becomes 

0 = t a n  01 dq/da! + 9 sec2 01 - 1 - q 2  tan2 a! 

dv/dn = t an  01 [-2 fl+ 2q2 (y - l)/(y + l)] 

(138) 

And differentiating a! in Eq. 135 with respect to 01 keeping W 1  and c1 constant 

(139) 

4- .. ,,- 

c 
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B tan2 a 

1 0" 
2 0.273 
3 0.222 

~ 4 0.204 
. 5  0.184 

6 0.167 

.. . .. 

(Wl/c1)2 P - a 
1 0" 
3.18 19'40' 
6.11 29'30' 

12.05 37'50' 
29.6 41'50' 

46" 

I 
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Substituting Eq. 139 into Eq. 138 and solving for tan2 a, the condition for the maximum deflection 
becomes 

Figure 11 

But from Eq. 130, . .  
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So that using Eqs. 134 and 133 

Therefore the condition that W2 = c2 becomes 

If the velocity past the shock wave, w2, is less than the velocity of sound in this region, c2, the 
disturbance at the f a r  corners of the wedge travels back toward the point of the wedge and affects the 
shock wave, causing the detachment. For a finite wedge, the situation indicated in Fig. 11 holds for 
angles larger than the critical angles. For an infinite wedge having a half angle greater than the maximum 
@ - a, the head wave becomes detached and travels back through the fluid. This gives rise to a non- 
stationary solution. 

etc. The phenomena are  similar to those for wedges but the analysis is considerably more difficult 
because the conditions of pressure, density, and velocity downstream can no longer be constant and 
satisfy the equation of continuity. 

Pitot tubes a re  designed to measure the velocity of a gas flow in terms of pressure. Effectively 
they form a wedge with a and B equal to zero. A tube extends from the gas stream to the pressure gage. 
The tube is constructed so that the gas velocity at the pressure gage is effectively zero. The condi- 
tions at the pressure gage (which we shall designate by the subscript 3) are related to the conditions 
just  in back of the shock wave by the Bernoulli equation 

The problem of headwaves for conical wedges (projectiles) has been treated by Taylor and Maccoll, 

But the conditions at the points 2 and 3 satisfj. the same adiabatic so that 

p3 = (P3/P2)1/yp2 

Substituting this into Eq. 145 and rearranging 

2 
(P$P2W)/Y = 1 + [(Y - 1)/2 Y ]  U2%/P2 

Uz = u1(q/P2)2 = @1P1/P2) [rl(S - l)/(rl- 111 = @1/P2) (t - l)/(V- 1) 

But according to Eqs. 126 and 129 

2 2  2 

So that Eq. 147 becomes 

(p3pz) ( y - l ) l y =  1 + [(y - 1)/2 y] ( 5  - l)/S(S- 1) 

(P$P2)(Y"l)/Y = (Y + u2/4 Y + [(Y2 - 1)/4Y] l /5 

And substituting the expression for from Eq. 132 and rearranging 

After multiplying both sides of the equation by 

4 ( Y - l V Y  = (p2/p1)(Y'1)/Y 

(145) 

. .  
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and taking the y / ( y  - 1) root of both sides of the equation 

P ~ / P I  = 4 [(Y + 1I2/4v + (y2 - 1 / 4 ~ )  1/4]71(7-') (151) 

Where # is obtained from Eqs. 133 and 135 after setting a = 0 .  

c = b Y / b  + 111 (Wl/C1)2 - (Y - W(Y + 1) (152) 

Thus the pitot tube measurement of p3 determines the gas velocity, w1, if the initial pressure and 
density of the gas are known. 

12. STATIONARY TWO-DIMENSIONAL FLOWS: FLOW AROUND CONVEX CORNER (RAREFACTION) 

The supersonic flow of a gas around a convex corner leads to a rarefaction instead of a shock. 
Figure 12 shows the flow. The gas maintains constant pressure, density, and velocity until it reaches 
the line 00' where the disturbance from the corner first reaches it., The streamlines turn almost 
radially about one corner and then become parallel to the new surface. 

Originally the pressure, density, and the velocity 
are  uniform and they become uniform again after 
passing through the rarefaction. It is convenient 
to use polar coordinates with the corner as center 
for this treatment and we shall let u be the com- 
ponent of velocity perpendicular to the radius 
vector and v be the velocity in the direction of 
increasing radius vector. 

The line 00' is at an angle, 0 0 = n/2 - $, 
where $ is the Mach angle, 

s in$ = c1/u1 

The meaning of the Mach angle is clear from Fig. 13. The rarefaction disturbance at 0 travels with 
the velocity c1, it is swept downstream with the velocity of the fluid, ul. Therefore, the farthest up- 
stream it can reach is along the line 00'. 

I /--- 0' 
I 

U U 

Figure 13 I 

In rectangular coordinates, the equations of motion and the equation of continuity for a stationary 
flow may be written 

% aux/ ax + aux/ ay = - (l/p) ap/ ax ' (153) 

Here we have let % and 9 be the velocity in the x and y directions respectively. In order to express 
these equations in polar coordinates, it is necessary to set 
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U , = U C O S  e + v s i n e  (156) 

uY = -U sin e + v COS e (157) 

(158) a/ax = sin e a / a  r + (l/r) COS 0 a/ae 

From these relations, we obtain 

u a u/a r + (v/r) a u/a e - v2/r = - (l/p) ap/a r (1601 

u av/a r + (v/r) av/a e + uv/r = - (l/pr) a d a  e 

a(pur)/a r +a(pv)/a e = 0 

(161) 

(162) 

These equations may be greatly simplified by the assumption that the velocity, pressure, and 
density in the rarefaction region are  functions of 6 but independent of r. The only necessary justifica- 
tion for this assumption is that we can satisfy all of the equations and obtain a formal solution of this 
type. The equation of motion and the equation of continuity then become 

(v/r) a u /   at^ - v2/r = o ' (16W 

(16la) 

(1 62a) 

(v/r) av/ ae + uv/r = - (l/pr) ap/@ 

pu = a (pv)/ae = 0 
\ 

Further mor e 

The Eqs. 160a, 161a, and 162a therefore reduce to 

au/a e = V  

v [av/a e , +  U] = - ap/ae 

v [U + av/a e ]  = - (v2/p) ap/ae 

In order for Eqs. 161b and 162b to be compatible, v = 2 c or ap/ 30 = 0 orav/ a0 + u = 0. If av/ ae + 
u = 0, according to Eq. 161a it would follow that ap/ a0 = 0 and the pressure would everywhere be the 
same. Similarly if ap/ af3 = 0, the density is everywhere the same. Neither of these cases could be 
generally applicable. Therefore we conclude that 

(162b) 

. (164) v = -  

From this it follows that 

And Eq. 162b becomes 

u + . a ~ /  ae = - [ 2 / ( y  - I)] av/ae 
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Taking the derivative of both sides of this equation with respect tO.0 and making use of Eq. 160b 

[(y + i)/(y - 111 a2v/ae 2 = - au/ a e  = - v (167) 

The solution to this equation is 

u = + A +COS i G  - i)/(r + 1) ( e  + 8 1 

Here A and b are constants of integration to be determined in the following manner. According to 
Bernoulli's equation (108), the square of the velocity is given by 

. '  u, 2 + v2 = [2/(y - 111 [c; - c2] 

In the original flow, the constant co is determined by the relation 

or 

And since v = - c, Eq. 169 becomes 

u2 + [ (y  + l)/(y - l)] v2 = 2c 

Substituting u and v from Eq. 168, we get 

- 1) = u1 2 2  + 2cl/(y - 1) 

To evaluate 8, we set v = - c l  when e = eo 

The change of the pressure with angle may be determined in the following manner. From the 
adiabat and v = - c we obtain 

V/(V)~,eo = - v/cl = (p/pl)(Y'')/* = [sin d(y - l)/(y + 1) ( 0  + 15 )]/sin d ( y  - l)/(y + 1) ( 0 0  + b (176) 

For very high velocities or sharp angles, the fluid flow cannot follow the contour of the corner and 
the flow forms a free surface. The slope of the velocity must change gradually. This slope is given by 
the expression 

u -u sin e + v cos e 
u cos e + v sin e 

LY= 
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If the corner goes from a surface which initially has the slope zero to a surface whose slope is dy/dx = 
- m, then 0 changes from 00 to the value given by Eq. 177 if u,,/ux is set  equal to - m. After this 
point, the pressure, velocity, and density remain constant. 

13. REFLECTION OF SHOCK WAVES FROM A RIGID WALL 

The reflection of shock waves from a rigid wall and the collision between shock waves a re  
important phenomena which lend themselves to direct experimental observations. For example, the 
reflection of shock waves from a rigid wall is often used to measure the velocity or pressure of shock 
waves. Figure 14 shows such an experimental set  up. The angle of the reflected shock wave tells the 
velocity of the blast wave if the pressure behind the blast is known or  the pressure if the velocity is 
known. As the blast progresses it travels across the plate. The phenomenon is tiierefore not station- 
ary with respect to space, but it may be stationary with respect to a co-ordinate system traveling with 
the blast wave. 

+BLAST WAVE . .’ B L A S T  WAVE, 

H.E. 

0 

/ 

BLAST WAVE B L A S T  WAVE 

H.E. 

0 REFLEGTEO 

Figure 14 Figure 15 

-. . . .-. 

Suppose that the blast is sufficiently far away from the plate so that the blast wave presents an 
essentially plane front. It strikes the plate at an angle n/2 - a. If the blast is traveling at a velocity, 
U, the blast wave will travel along the plate with a velocity U/sin a. In the co-ordinate system fixed 
‘with respect to the blast wave, the material in the undisturbed region, I, has the velocity - U/sin a 
parallel to the surface, and of course the initial pressure and density, p1 and pl. The fluid is deflected 
along straight lines toward the surface in region 11. A reflected shock wave rectifies the flow and makes 
the fluid motion in region 111 once more parallel to the surface. Let u s  designate the results of pass- 
ing through the original blast wave by unprimed letters and the results of passing through the re- 
flected wave by primed letters; also, we use the subscripts 1, 2, and 3 to designate conditions in the 
three regions. Let u s  suppose that we know U, pi ,  and pi. Then the conditions in region 11 are  com- 
pletely determined. Setting w1 = U/sin a, Eqs. 133 and 135 tell the pressure and density in region 11. 
Eq. 127 tells the angle p, Eq. 143 gives the velocity of the fluid in region 11. To get from region I1 
to region III the angle of the reflected shock wave must be adjusted so that 

(178) 
, P  p - a  = p - a  

Here p and (Y a r e  already known and 0’ and a’ are connected by the relation 

.. .. 
c 
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where , *  

A s  long as the shock is weak so that r1 is almost unity or as long as 'a is small, it is possible to 
find a value of a' which satisfies the requirement of Eq. 178. In the case of weak shocks, the reflected 
wave comes off at the acoustical angle, p' = a. However, for larger angles or stronger shocks there is 
no solution of this nature and the problem is much more complicated. 

For angles larger than the critical we have the picture shown in Fig. 16. Next to the surface we 
have a Mach wave perpendicular to the surface and extending out a distance corresponding to a dis- 
turbance traveling with the Mach angle from the corner of the plate.* This distance therefore increases 
with time as the blast passes across the surface. Joined to the Mach wave is the original blast wave and 
the reflected wave. Behind the reflected shock wave is a small region of compression. The fluid which 
passes through the Mach wave has a higher temperature and a different density from the material which 
has passed through the two shock waves and therefore there is a slip stream separating the two gases 
(with no pressure gradient across the slipstream). 

REFLECTED 
SHOCK WAVE ' 

0 
0 

f- MACH WAVE 

COMPRESSION - 

MACH ANGLE 

Figure 16 
0 

14. TWO-DIMENSIONAL STATIONARY PROBLEMS-METHOD OF CHARACTERISTICS 

For stationary flows, the equation of motion (96) and the equation of continuity (97) become 

- U ' V P  + p V ' u = O  

In addition we have an equation of state expressing the pressure in terms of the density and entropy. 
The entropyt remains constant along a streamline so that 

- u - v s = o  
. ,  

3 i 

*This is accurately the Mach angle only in a simple three-shock theory, and is observed to differ 
from it considerably. 

tIn everything that follows, any function of the entropy would work j u s t  as well as the entropy 
itself, For example, in a'gas obeying the y law,,pVY = k(S), it would be convenient to use k in place 
of entropy. 

a %  _- 
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Let u s  introduce a parameter 1 which measures the length along a streamline and similarly a parameter 
n which measures the length along the normals to the streamlines. From the definition of 1 

. .  
- u V = ud/dl u = 11.11 (184) 

If 9 is the angle between the streamline and the x axis, then 

tan q5 = uy/ux (185) 

and 

d/dl  = c o s  q5 a/ax + s in+  a /ay  

d/dn = - sin + a /a  x + cos q5 a /a  y 

(186) 

(187) 

We now transform the differential equations 181 through 183 into differential equations along the 
streamlines and their normals. Equation 183 has already the correct form since it is identical with 

dS/dl = 0 

A second equation is obtained from the equations of motion which yield the Bernoulli equation (similar 
to Eq. 101) 

Differentiating Eq. 185 along a streamline we find 

dq5 dUY ' dux u - = c o s + -  -sini$- dl .dl dl 

And making use of Eqs. 181 and 184 

Then with Eqs. 186 and 187 

The first term in this equation is the centrifugal force which is balanced by the second term correspond- 
ing to a pressure gradient normal to the streamline. 

In order to express the equation of continuity in terms of 1 and n, consider a fixed point, PO. We 
can define a Cartesian co-ordinate system with the origin at the point PO and the x axis pointing in 
the direction of the streamline which passes through Po. Then at  PO both uy and duy/dx vanish. Hence 

For a point, P, on a neighboring streamline we have to the first order 

' (at P) q5=3dn 
I dn 

799 0 3 4  

(194) 
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Substituting Eqs. 184, 193, and 196 into the equation of continuity Eq. 182 

- ,  

dn u - + p  - + p  dl ax 

(195) 

Since PO was arbitrarily chosen, Eq. 197 holds for any point. 

disturbance created cannot reach farther upstream than the region bounded by the characteristics 
(see Fig. 13, here 00’ is a characteristic). The characteristics make the Mach angle, $, with the 
streamlines. Here 

We can now define two “characteristics” such that if a Signal is emitted from any point, the 

sin $ = c/u (law 

There a re  plus and minus characteristics depending on whether the ahgle between the streamline and 
the characteristic is plus or minus I). 

If we let A +  - be the distance along a plus or minus characteristic, then 

d d d - = cos $ - + sin $ - dl - dn 
. 

, a+_ , ~, 

The equation of continuity (197) becomes (making use of Eqs. 191 and 199) 

But the Bernoulli equation (189) can be written ~ 

And we also have 

* =  9 4 = c 2 ~ = s i n 2 $ u 2 *  
dl (dp), dl dl dl . 

Using these relations to eliminate dp/dl and du/dl from Eq. 200, we find 

*- a *$OS2$ 1 * 
a+ u p  U P  

- -  
2 dn sin$ 2 dl 

Then making use of Eq. 199’ 

(204 j 
- .I- 

. * .-. 

. . . - . . - 
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We may use this equation together with Eqs. 188 and 189 which involve distance along the streamlines 
but not the distance normal to the streamlines. Or, alternatively, we m?y also eliminate the stream- 
lines from the above equations by observing that 

Hence from Eq. 188 

And therefore 

d d  d 
dx, a- dl - + - = 2 cos $-  

Special Case- No Vortices and Entropy Constant Throughout Fluid 

Let u s  assume now that the motion is free of vortices and that the entropy is constant. These two 
conditions usually go together since both vorticity and varying entropy will in general be introduced 
into our problems by means of shocks of varying strength. 

The assumption of no vorticity leads to the identity 

(208) 
1 

- 2  u * v u = - v u2 - 

The assumption of constant entropy has a s  a consequence that p and p a re  functions of each other so 
that 

.4nd the Bernoulli equation becomes the same as  Eq. 103 

Here, in contrast to the more general case just considered, IT is a constant not only along one particular 
streamline but throughout all space. 

Thus for a given value of IT, u is a unique function of the pressure. Since also c is a unique function 
of the pressure, the same is true of the Mach angle which is defined in terms of c and u. Hence we can 
define a function, F, by thd integral 

(211) 

For a given value of IT and a given value of the entropy, this function is a unique function of the pres- 
sure. If we wish to consider the density, p, as  the independent variable rather than p, we may write 
Eq. 211  also in the form (by use of the relation u2 s in2$=  c2 = dp/dp) 

(211a) 

7 

--. 

*r . . 1- 

r 

., . - _  
3 

f- 

- *  
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Equation 204 may be written in the form i 

(4 2 F) = 0 dA A 

is constant along the correseonding characteristics. 

of the streamlines and the pressure at any point where two cha&teristics a+ and 01- intersect. We 
need only write Eq. 213 in the form 

In general, each characteristic will have its own value of a+. We obtain immediately the direction 

a+ + ff, 4=- 
2 

Q+ - ff, 
2 

F=- 

The material velocity, u, is then given by Eq. 210 and the Mach angle JI is given by Eq. 198. 

we have to integrate once more 
differential equation 

However, in order to find the position in space of.the point of intersection of two characteristics, 
obtain the equation of the characteristics which satisfies the 

dy/dx = tan (+? J I )  (216) 

For uniform flow (i. e., 4 and F a re  constant), it follows from Eqs. 214 and 215 that a+ is the same 

Consider now what happens when a region of uniform flow is joined by a region of nonuniform flow. 
for all plus characteristics and a- i s  the same for all minus characteristics. 

This situation occurs when a fluid flowing with constant velocity along a plane wall comes to a bend in 
the wall. This is shown in Fig. 17. If the bend starts at a point A, it will  give rise to a disturbance 
affecting the region to the right of the plus characteristic AB. The plus characteristics i n  this region 
start from the wall. The minus characteristics cross from the region of uniform flow and therefore 
CY- is the same for all minus characteristics. Consider now a plus characteristic A' B' with a char- 
acteristic parameter a+. Since C Y -  is constant, it follows from Eqs. 214 and 215 that (b and F have 
the same value for all points. In other words, the direction of the streamlines, the pressure, and 
therefore also the material velocity and the Mach angles a re  constant along any plus  characteristic. 
Furthermore, since the direction, @J + @, of the plus characteristics i s  constant, the plus characteristics 
are all straight lines. The minus characteristics have of course all the same direction (4 -q )  when 
they cross a given plus characteristic, but they change direction when crossing from one plus char- 
acteristic to another. 

+ 

Figure 17 
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The quantity (Y+ has to be determined from the condition that at the boundary, the direction of the 
streamline is in the direction of the wall. If4wall is the angle of the wall with the x axis at the point 
where the characteristic starts, and CY- is known from the properties of the flow in the region of uniform 
flow, then from Eq. 214. 

and from Eq. 215 

If the wall curves away from the fluid, &all decreases in the direction of flow and therefore a+ 
and F decrease. From the definition of F, Eq. 211, it follows that the pressure decreases (as was to 
be expected); hence from the Bernoulli equation (210) it follows that u increases. Since c decreases 
with a decrease in pressure, it follows that the Mach angle II, also decreases and the plus characteristics 
turn clockwise. 

However, if  the wall curves in the direction of the fluid, the plus characteristics would t u r n  counter- 
clockwise and therefore intersect with each other. This gives rise to a shock wave. If shock waves are 
a re  to be avoided, the plus characteristics can turn clockwise only if the fluid i s  limited in both . 
directions such that the intersections of the characteristics occur only outside the fluid. However, in 
such a case, it should be borne in mind that the solution given above only hold’s’ as long as the minus 
characteristics come from the region of uniform flow. The solution breaks down (except in special 
cases) when the minus characteristics start coming from the upper boundary in the disturbed region. 

The solution above coincides with the Prandtl-Meyer expansion if the wall describes a sharp 
corner. 

The Function F for a Perfect Gas 

The function F introduced above can be evaluated analytically if  we consider a perfect-gas equation 
of state. In that case 

and Bernoulli’s equation (210) becomes 

u2 = R - 2 c2/(y - 1) 

Hence ’ 

Furthermore 

and 

. .. 

- .  . -  
-. - _ .  - _  
. -  
” I  

? -  

.. 
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Therefore from Eq. 211 . 

r . ,  37 

d F  d F & &  - 2 cos2* 
r -  - 

dll, dp dc dlJ, - y - 1 + 2 sin2Q 

And this can be integrated to give 

in this form the function F turns out to be independent of both the constant 
this is not the case for other equations of state. 

n and the entropy., However, 

N. SPHERICAL BLAST WAVES 

Lectures 15 through 19 by Penney 
Lecture 20 by Bethe 

15. GENERAL EQUATIONS AND VIEWPOINT 

Blast waves are good examples of the shock waves which we studied in a previous section. B7e are 

Usually the matter in front of the shock wave is at rest so that u1 = 0. 
Next, let us write down the appropriate shock conditions forsthe blast wave 

interested in blast waves in air for which*the perfect-gas equations suffice with y = 1.4. 

u1 = D1 + U = 0 o r  U = - D1 (226) 

From Eqs. 56 and 52 

Here, of course, 

From Eq. 130 

and from Eq. 67 

r]  = pz/ p1 and .$ = P /P 2 1  

c2 = y P/p 

- r  

Combining Eqs. 226, 228, 229, and 230 . 

From Eqs. 227, 228, and 230 
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Furthermore, it is convenient to discuss the temperature, T i ,  to which the gas returns after the wave 
has passed and the pressure returns to its initial value, p1. F'rom the perfect-gas law, pV = R T, and 
for the perfect adiabatic gas, pVy = k(S), it follows that 

Ti/T1 = V i / V i  = (V2/V1) (P~/P~) ' /Y = S '/Y/v (233) 

From Eq. 72 it follows that the ratio of T i  to T i  is connected with the change in entropy by the relation 

AS = Cp In T$/T1 (234) 

Instead of considering T i  itself, we can consider the increase of temperature, 0, such that 
' 

~i = T~ + e (235) 

For weak shocks, it follows from Eq. 73 that 

@/TI = (1/2y) (1 - l/?) ( 4  - l I 3  + ... '(236) 

Since the change in entropy is .equal to the heat dissipated divided by the temperature, it follows 
that for weak shocks where 

AS = Cp In [1 + @/TI] = Cp O/T1 + ... (237) 

the heat dissipated i n  the specific volume, V1  = l/p1, i s  T1 AS = CpB. Therefore the heat, H, dissi- 
pated by the blast wave in passing through a unit volume of matter is 

H = PITIAS = picp@ (238) 

For air with = 1.4 and T1 = 273°K) we get, using the exact expression for V ,  Eq. 67, 

6 2 3 5 10 50 100 200 

0('K) 2.5 10.3 31 97.  579 1065 1417 

The energy dissipated per unit vglume of air is therefore small if .$ is less than 10, but very large for 
higher compressions. 

air with y = 1.4, Eqs..230, 231, and 232 become 

2 
1 

For very strong blast waves, the hydrodynamic equations become very simple. For example for 

(239) 

For weak shock waves with 6 less than 2, the shock equations can be expanded in powers of ( 4  - 1). 

= 8; U2/c = 6 6/7; uz/U = 5/7 

According to Eq. 68 

Then from Eq. 229, 0 
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(242) 

from Eq. 231, 

and from Eq. 232, 

u2 1 
U Y  
- = - ( 4  - 1) - y+l (4 - 1)2 + ... 

2Y2 

16. DEGRADATION OF STRONG BLAST WAVES (NOT NEGLECTING ENERGY DISSIPATW) 

For strong blast waves i n  air, it is not possible to neglect the dissipation of energy and the rcsult- 
ing entropy gradient in the air  behind the blast wave. The hydrodynamical equations in spherical 
coordinates then become somewhat too complicated to solve analytically. PenneyI3 has developed an 
extension of the Riemann method which is applicable to this case. He introduces two functions P and Q 
defined by the relations 

P = a + u  (244) 

Q = u - u  (245) 

Where u is the radial velocity of the gas (assuming that its motion is strictly radial) and o is the usual  
Riemannian variable 

u =lp dp 
-e 

n. 
: r  

Q:. 

c -  

where 

c2 = ( a P / a  p 

since a constancy of 0 implies the constancy of entropy. 
A s  is easily verified, the equation of motion (96) becomes in spherical coordinates 

and the equation of continuity (97) becomes 

Thus making use of the fact that 0 remains constant for a given gas par 
0, it follows after a considerable job of algebraic manipulations that 

1. For a point moving with the speed dr/dt = u + c, . 

icle, i.e., as/at  + u ae/ar = 

dP = dt [- 2uc/r + c (au/ae)P (ae/ar) t ]  (250) 

2. For a point movidg with the'speed dr/dt = u - c, 

i :  
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dQ ='dt [- 2uc/r - c (au/ae), (ae/arl t]  

I 
/-I-- 

- 
i- 

' ' (251) 

Thus P and Q serve the same purpose in the blast wave calculations as the lines of constant u + u and 
constant u - u in the one-dimensional Riemann method. The only difference is that now the line with a 
slope of u + c will have a value of P which varies slowly with time. These quantities lend themselves 
to a point-by-point numerical integration such as indicated in Lecture 6, Section 11. For a perfect- gas, 
u =  2c/(y - 1)) and the expressions for dP and dQ, Eqs. 250 and 251, become 

1. For a point moving with the speed dr/dt = u + c, 

I ,  

2. For a point moving with the speed dr/dt = u - c, 

The boundary conditions a re  those for shock waves summarized in Eqs. 226 through 232 or in Eq. 239. 

with the speed dr/dt = u + c which usually is faster than the velocity of the blast wave. The character- 
istics in front of the shock wave must be disregarded. 

The only tricky feature of the calculations is that the lines with the characteristic, P, are  generated 

17. SHAPE OF BLAST WAVE AT LARGE DISTANCES 

At  large distances where the peak pressure is less than twice ?e initial pressure (6 less than 2), 
we can neglect the energy degradation and 0. In that case it is easy to show in a rough qualitative fashion 
that the peak pressure should decrease inversely proportionally to the distance, R. Using the method of 
the last section, we have 

(252) 
2 

Y - 1  
u = - (c - cl) 

The additive constant, 2c,/(y - 1)) is added for convenience. It is easy to show that any constant number 
added to u cannot affect the conditions in the fluid. Then right behind the blast wave (using Eqs. 245, 
241, 242, and 243) 

through terms of the order of (6 - l)2. 
Also it may be shown that at points behind the blast front, Q remains practically zero. This follows 
from the fact that 

dQ/dt = - 2uc/r Where dr/dt = u - c , (254) 

The value of u is smaller than its maximum value, u2 = (cl/y) (6 - l), and dr/dt is very nearly equal 
to -cl. Therefore 

dQ 2cl 1 - < - ( 4  - 1)- dr Y r (255) 

a- 
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or 
I . '  

and the value of Q is negligible with respect to c. Therefore taking 

4 g * b, u = a, and P = u + u =.- (c - cl) 
Y - 1  

But 

dP/dt = 2uc/r = - 4c(c - cl)/(y - 1)r 

when 

(259) ' dr/dt = u + c * [2/(7 - l)] (C - ~ 1 )  + c 

Differentiating P from Eq. 257 and substituting into Eq. 258, 

dc/dt = -c(c - cl)/r 

Combining Eqs. 259 and 280, 

dc 1 c(c - c1) 
A=..- 

dr  r c + [2/(y - l)] (c - c1) ' 

dr 1 - r = -dc [c-c, + (+) Y 1 c  '1 
.and integrating Eq. 262, 

' * .  

fiere 0 is P constant along the characteristic. 

froin Eq. 263 the corresponding value of the constant is G = Go, then we can use Eqs. 260 and 263 to 
tell us the corresponding values of f and c at a subsequent time, t. Using Eq. 263 to eliminate r in 
Eq. 260 

we know that at  the point r = ro at the time t = to the velocity of sound has the value c = co and 

I or integrating 

If (y + l)/(y - 1) is an integer, the integration may be carried out explicitly. Thus (using Dwight's 
Tables of Integrals 161.2), the integration is particularly simple for Y = 3, the result is 

=- 

e* 

n.- 
. .  
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(266) 
c*c - 

Go 1 
- = 2 [(i - :) + (&) - (A) + < In c(c0 - c1) 

1 C 

and for other values of y such that (y  + l)/(y - 1) is an integer, the explicit integration is carried out by 
means of a simple recursion relation (Dwight’s Tables of Integrals 161.29). From Eq, 265 or 266 we 
can tell the value of c for any time and then from Eq. 263 we know the corresponding radius. 

There is only one objection to the above procedure. The front of the blast waves do not travel as 
fast as the propagation of the characteristics. Therefore the position of the shock front must be cal- 
culated separately and any values of the radius obtained by the above procedure which lie in front of 
the shock front must be discarded. At any time, the position of the shock wave, R, may be determined 
from the integral 

R = U dt + constant (267) 

Here the integration must be carried out numerically with the help of Eq. 242 

u = c1 + ( y+l 4y ) c1 (6 - 1) + ..* (242a) 

The value of 6 to use in Eq. 242a can be computed from the values of c obtained from the charac- 
teristics. 

the pressure at a given point a s  a function of time. Knowing the pressure for all times at this one 
point, we can then calculate the values of G and obtain the shape.of the blast wave and the pressure 
at any other position. 

18. TAYLOR’S TREATMENT OF STRONG BLAST WAVES (SIMILARITY SOLUTION) 

The above treatment is particularly useful  in analyzing the results of a blast meter which measures 

Taylor developed a similarity solution for the conditions within and behind strong blast waves. He 
treats the radius of the blast wave, R, as  an independent variable. All the properties of the gas behind 
the blast wave are then expressed in terms* of R and y = r/R. Assuming that the blast wave starts 
expanding from a point source, Taylor seeks solutions to the equation of motion, equation of continuity, 
and the equation for the conservation of entropy (behind the blast) such that 

(268) 
2 

p/p1 = A2 f(Y)/cl 
I 

P/P1 = g(Y) * (269) 

(270) u = L R-3/2 h(y) 

dR/dt = A R-3/2 (271) 

*We have changed Taylor’s notation in the following way: 

Taylor notation V t f O  

Notation this report y g f h 

-.- 
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Here the constant, A, is related to the energy of the system. In replacing the variables r and t in the 
hydrodynamical equations by R and y it is convenient to set 

The equation of motion (248) then becomes 

(3/2) h - y h' + hh' + f'/(yg) = 0 (274) 

and the equation of continuity (249) becomes 
/ 

(h-  y) g ' +  2 g h/y + h' g = 0 e751 

Since the equation for the conservation of entropy for an element of fluid (after passing through the 
blast wave) following this element of fluid in its motion is 

(276) 

it follows that 
f. . 

I 

f .  = f [ -3y '+ (3 + % y )  h - 2y h2/r] 

[(Y - h)2 - f/gl 
(277a) 

, h' = [(UY) (f'/g) - 3h/2] / (Y - h) * (277b) 

g' = g b' + W Y ]  / (Y - h) (277c) 

These equations can be solved for f', g', and h' in terms of f,  g, and h. Knowing the values of the functions 
f,  g, and h, at the shock wave, i.e., y = 1, we can integrate these equations numerically to determine 
their values at any other value of y. At the shock front 

U = dr/dt = A R -3/2 (278) 

(279) 

(280) 

(281) 

g(1) = P2/P1 = (Y + M Y  - 1) " , 

h(1) = u2/U = 2 / ( y  + 1) 
2 
1 f(1) = (c /m (pdp1) = 2Y/(Y + 1) 

Solving these equations numerically for air with y = 1.4 and for a substance with y = 5/3 Taylor14 
obtained the following results shown in Table 1 and Fig. 18. 
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1.00 2 

0.98 
0.96 
0.94 
0.92 
0.90 
0.88 
0.86, ' 

0.84 
0.82 
0.80 
0.78 
0.76 
0.74 
0.72 
0.70 
0.68 
0.66 
0.64 
0.62 
0.60 
0.58 
0.56 
0.54 
0.52 
0.50 
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Table 1 I 

A i r  with y = 1.4 

f h 

1.167 0.833 
0.949 0.798 
0.808 0.767 
0.711 0.737 
0.643 0.711 
0.593 0.687 
0.556 0.665 
0.528 0.644 
0.507 0.625 
0.491 0.607 
0.478 , 0.590 

"0.468 0.573 
0.461 0.557 
0;455 0.542 
0.450 0.527 
0.447 0.513 
0.444 0.498 
0.442 0.484 
0.440 0.470 
0.439 ' 0.456 
0.438 0.443 

0.437 0.415 
0.437 0.402 
0.437 0.389 
0.436 0.375 

' 

0.438 0.428 

g 

6.000 
4.000 
2.808 
2.052 
1.534 
1.177 
0.919 
0.727 
0.578 
0.462 
0.370 
0.297 
0.239 
0.191 
0.152 
0.120 
0.095 
0.074 
0.058 
0.044 
0.034 
0.026 
0.019 
0.014 
0.010 
0.007 

. I  

Approximate Calculation for y = 5/3 

Y f h g 

1.00 1.250 0.750 4.00 
0.95 0.892 , 0.680 2.30 
0.90 0.694 0.620 1.14 
0.80 0.519 0.519 0.63 
0.70 0.425 0.445 0.28 
0.50 0.379 0.300 0.05 
0.00 0.344 0. OOO 0.00 

' 
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Figure 18-Air, with y = 1.4. 

Unfortunately, we cannot satisfy the shock-wave boundary conditions for weak shock waves. Therefore 
this solution is only satisfactory for strong blasts and becomes progressively less satisfactory as the 
blast becomes weak. 1 .  

It is easy to obtain the total energy behind the blast wave in terms of f,  g, and h. Let this energy 
be Et&, then 

The total energy is therefore expressed in terms of a definite integral which is only a function of 
gamma. Thus for air with y = 1.4, we get 

Et& = 5.36 plA2 (283) 

.. 
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and using this expression to eliminate A 2  

p = 0.133 Etot f/R3 

u = 0.442 (Etot/p1)'/2R-3/2h 

1/2R-3/2 U = 0.442 (Etot/pl) 

P = Plg 

These equations form a complete solution to the strong-blast-wave problem. Notice tha- from these 
equations it is  clear that, for a given total energy, p is independent of the atmospheric pressure or  
density, u and U are  inversely proportional to the square root of the atmospheric pressure or  density, 
and the time scale is  proportional to the square root of the atmospheric pressure or density. 

the Taylor functions since (using Eq. 72) 
The energy W dissipated (in heating the air behind the shock wave) can be expressed in terms of 

To get a lower limit to the dissipation, this integral can be carried out to a distance, Ro, where accord- 
ing to the Taylor equations the pressure in  the shock front is reduced to the initial pressure. Because 
of the poorness of the approximations involved when the shock wave goes from strong to weak, this 
does not give a very accurate value. Thus Penney 13915 found for air 

0 

W/Etot 0.18 0.33 0.52 0.61 0.64 0.64 , 

R/Ro 0.1 0.2 0.4 0.6 0.8 1.0 

The energy dissipation from a point-source explosion according to the Taylor theory is not very 
accurate since the rate of dissipation of e.iergy is still app-reciable when the overpressure is a few 
atmospheres. This is true because the large area of the shock front at the lower pressures nearly 
compensates for the much lower dissipation per unit area of the shock front. Unfortunately the 
similarity solution of the point-source explosion i s  not valid as far as this. The total dissipation at 
the stage where the overpressure is of the order of one atmosphere i s  about 80 per cent of the energy 
release. Such an estimate of course only applies to the highly idealized system envisaged by Taylor. 

made. Experiments in air  on bare charges have succeeded in contributing conto rs of the shock front 
at various times. Numerical integration over the shock front at various times ave shown that the 
energy dissipation up to the stage at which the overpressure is  a few pounds t the square inch is 
roughly equal to the usually accepted value of the chemical energy of the char i e. Since the blast 
wave at this stage still has an energy content of about one-quarter of the chehical energy, there is 
an apparent discrepancy in the energy balance. The most likely explanation i s  that the extra energy 
results from afterburning of the products of the explosion at the early stages when the interface 
between the explosive products and the air is not sharply defined, because'a sharp interface would be 
unstable. 

Other numerical estimates of the energy dissipation in the blast wave from an explosion can be 

/ 

I '  
19. VON NEUMANN THEORY O F  BLAST WAVES (GREATER GENERALITY BUT STILL WITH 

SIMILARITY) 

Von Neumann has developed a theory of blast waves" which is slightly more general than the 
treatment of either Taylor or  Penney since it is  applicable to one, two, or  three-dimensional problems 

- . .  
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and can be used with general boundary conditions. For example, it would,not,be necessary to have con; 
stant density outside the blast wave. However, to illustrate the method letlus cohine our discussion to 

us define* 

7.- 
- the same spherical expansion problem treated by G. I. Taylor (see last section). For this purpose, let 

. ..- 
R = blast wave radius , 
ro = co-ordinate of particle at time t = 0 
r = co-ordinate of particle at time t = t 
J = ratio of kinetic to interdal energy of particles = 3 u2/E 

, 
< - I  

1 3 -  3 
t< . 

Von Neumann then seeks a solution satisfying the similarity conditions *- 
= .  

r d R  = Z(J) (289) 

r/R = Y(J) (290) 
c 

He then takes t and J +ds his independent variables. Thus 

drg = Z dt + RZ’ dJ (291) dt 

(292) 
dR 
dt dr = y - dt + Ry’ dJ 

or eliminating dJ  between these equations, 

.-.-\ 

I 
‘I  

dr = ?  [y - F] dt +Fdro (293) 

Therefore 

u = (a r /a t ) ro  = (dR/dt) [y - Zy’/Z‘] (294) 

and 

(ar/arO)t = y’/Z’ 

For strong shock waves, we have the boundary conditions at the wave front 

‘ J = l  

(295) 

*Theta introduced by Kynch is called J. 



addition to satisfying the boundary conditions, the functions y and Z must satisfy the four equations: 
> ,  1. Equation of continuity, . .  

+ =  

2. Equation of adiabatic motion (after shock wave has passed) 

(297) 

3. Equation of state 

E = P/ [P(Y - 111 (299) 

4. Equation of conservation of energy. This together with the equation for the adiabatic motion is 
equivalent to the equation of motion. We will develop this condition later. First, use the above equations 
together with the boundary conditions to express E in terms of Z and y. 

E=----= P 

2 
I (300) 

Then 
u2/2 (y - ZY'/Z')2/2 J = -  = 

E 

< 

This equation gives one relationship between J and f ,  Z, f ' ,  Z'. Now to get the total energy in the system, 
Etot, we perform the integration *.. 

R 
Etot = 4 n l  p(E + u2/2) r2 dr (302) 

But 

Therefore 

Let 

< dJ = dr/Ry' (303) 

p = p1 Z2Z'/y2y' 

r2 = R2y2 

E + u2/2 = E (1 + J) 

Etot = 471 p1 E(l + J) R3Z2Z' dJ s' JO 
(304) 

G(J) = (,2"_ - I) (s)' (%)'-' Z2Z' (1 + J) = (1/2) (i + 1) 222' (y - Fr (305) 

-" 

I 

? 

i.* . 
- *>= 
I . , 
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1 1 
Eto t=  4 1 s  . p1 R3 (dR/dt)2 G(J) dJ = R3 (dR/dt)2 4:s p i  G(J) dJ (306) 

JO Jo . 

If the gas extends to the center, JO is zero. The equation of conservation of energy states that E b t  is 
constant with respect to time. The only way this is possible is for 

R3(dR/dt)2 = constant (307) 

or  

dR/dt = A R-3/2 . (308) 

This result is then the same as in Taylor's theory. 

that the ratio of its kinetic to its potential energy is J is given by the equation 
The total energy of the gas lying within a small sphere whose radius is determined by the condition 

J 
Etot (J) = 4 ~ R ~ ( d R / d t ) ~ J  p1 G(J) dJ 

JO 

The rate at which this gas does work on the surrounding gas is given by 

But 

Z d R  

-- dEtgJJ) - 4nR3pl G(J) = 4nR3pl Z2Z'(1+J) ' dJ 

So that using EqS. 300 through 315, cancelling and rearranging Eq. 312 becomes 

yz'=y+J * 

zy' y -  1 - 

And substituting this into the equation for the conservation of energy 

5'54 

(309) 

*. (311) 

. *  

0 5 8 '  
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Solving these two equations simultaneously, von Neumann obtained y and Z in the completely analytical 
form 

At the origin, J is zero. 

element of volume in the integrals are changed. Otherwise the method remains unchanged. 
In case the problem is q dimensional instead of three-dimensional, the equation of continuity and the 

20. BETHE'S MODIFICATION OF W.K.B. METHOD (WEAK SHOCKS, NO SIMILARITY) 

Bethe developed a semiacoustical method for treating weak shocks where no similarity conditions 
are possible. His method is similar. to the well-known W.K.B. method of quantum mechanics. It is 
based on acoustical theory a s  the zero approximation. 

ing inward. Thus 
In acoustical theory, the overpressure is made up of a wave traveling outward and a wave travel- 

p - p i  = f'(t - r/c)/r + g'(t + r/c)/r (320) 

The factor l/r is due to the geometrical attenuation of the pressure. Here f '  and g' a r e  arbitrary 
functions. The wave f' is traveling outward since its argument remains constant when r/c increases at 
the same rate as  t, Similarly g '  represents an incoming wave. Equation 320 is the most general 
spherically symmetrical solution of the acoustical equation 

1a2p 
c2 at2 

A p = -  

The material velocity, u, is given by the relation 

Notice that the inverse square terms in the second bracket exist even for incompressible materials 
with infinite velocity of sound. In the acoustical theory, waves always retain their shape since the small 
variation in the velocity of sound for the infinitesimal pressure differences considered is neglected. 
This is not true in any actual case, even for very weak shocks. 

2up/r, in the equation of continuity makes it impossible to use it for the case of any sort of spherical 
wave. 

is very small compared with the distance, r, from the wave to the origin. Under these conditions, 
2u/r will be small compared with au /ar ,  and generally, in the disturbance, the hydrodynamical 
variables change rapidly compared to r. With these assumptions, Bethe showed that weak wavelets 
which proppgate with the velocity c + u maintain constant values of the characteristic, (u.+ u) r. In q 
dimensions they would have the characteristic (u+ u) r(q-1)/2. As in Eq. 252, we have 

The Riemann method could be used for very weak shocks in one dimension, but the additional term, 

Bethe has developed the W.K.B. approximation to treat those cases where the half wave length, L, 

6352 
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Ahead of the shock wave, u - u = 0, since both u and u are zero. Directly behind the shock wave accord- 
ing to Eq. 253, u - u = 0 through terms of the order of (( - l)2. Farther behind the shock, (u - u)/u 

of the order of L/r a re  neglected we can assume (as in Penney's treatment) that everywhere 

..? < .  - becomes of the order of L/r due to the influence of a term similar the last term in Eq. 322. If terms 

. i- 

s 

c 

4 
L-  

a.. 
* F, 

. 
CI-J 

- #  

- -_ 

.. , ., 
u = u  (324) 

The time, t, for a signal traveling with the velocity u + c to go from R1 to R is' then given by the 
relation 

dr R dr  R dr  
(325) 

Now at sufficiently large distances from the origin where the inverse square terms have become 
negligible i n  the acoustical case, the velocity of a given wavelet decays in the following manner 

u(r) = Or-  (q-1)/2 (326) 

Here w is a constant characteristic of the wavelet and q is the number of dimensions of the problem 
under consideration (q = 1 for a plane wave, 2 f o r a  cylindrical wave, and 3 for a spherical wave). 
Remembering that u is small compared to c1 

--- - - R1 In (R/R1) ' 

C 1  2c . 1 

(for q = 3) 

Formation of Shocks 

Thus if two parts of a wavelet initially have different mass velocities, they will travel at different 
velocities (namely, faster when u and u a re  larger). This makes the compression phase of the wavelet 
become steeper and the rarefaction part become more extended. These effects will be more pronounced 
i n  the one-dimensional than in the two- o r  three-dimensional cases. The following example will make 
this clear. 

Suppose that at the time t = 0, we have a sinusoidal pulse traveling outward. This is shown in 
Fig. 19a. At a somewhat later time, t, this wave has assumed the shape shown in Fig. 19b and, after 
a sufficiently long time, it assumes the limiting form shown in Fig. 19c. These drawings would have 
similar shapes if we plotted the velocity of sound, c, versus position rather than pressure versus 
position. If the amplitude of the waves is small and they have traveled sufficiently f a r  so that the in- 
verse square contribution to the material velocity can be neglected, then from Eqs. 320 and 322 it 
follows that 

= (P - P1)/Pc = (P - P l ) / P f l  (328) 
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P4 P4 ptt B-L- p4 

A 

'Figure 19 
I .  

Thus the greater the pressure the greater the material velocity. 
If the overpressure at  A is initially Pm = PA - p1 and if the position of A at  this time is RA 

r 

- -  .. 
Since the wavelength is supposed to be small compared to the distance RAl, it follows that wg/cl = 
-wA/cl. At the points F and D, o = 0. Now consider the implications of Eq. 327 for the behavlor of waves 
on different numbers of dimensions. 

After the time t, the point A has moved the distance RA - R A ~  given by the equation 
\ 

c l t  = R A  - R A ~  - [ R Y - d l 2  - RYid/2] (except for = 3)' (330) 

In this time, the point F has moved the distance RF - R F ~  given by the equation 

C l t  = RF - R F ~  \ (331) 

At the time, tAF, when A overtakes F 



- 1  
Eh- 

"f . 
r : -  

@a. .~ 
h .  

Thus when q = 1 

W h e n q = 2  

(333) 

Whenq=3  

When q = 4 

1334) 

Here the terms ( ~ / 2 )  are neglected since the time for the shock to be formed, tAF, is considered 
to be long compared to the time for a signal with the velocity of sound to travel across the wave. This 
approximation is inherent throughout the theory. Better results would not be obtained by the inclusion 
of these terms because of compensating e r rors  which will be explained later. Thus it takes pro- 
gressively longer time for a shock wave to develop in one, two, or three dimensions. In more than 
three dimensions shock waves only occur if 

1- 

-. a - <  

Lc 

, i' 
d' 

' I  
4 

j 

2 
[Y/(Y + I)] (L/RA~) (P1/Pm) 

is small compared to unity. 

this second shock to develop is approximately the same as the time for the front shock to develop. After 
the shocks are formed, the linearity of u with overpressure ensures that the pressure in the pulse will 
become linear with distance as shown in Fig. 19. Since the front shock moves with the velocity char- 
acteristic of the peak pressure and the second shock moves at a slower velocity characteristic of the 
initial pressure, the two shocks will separate and the wave will spread. 

originally sinusoidal, it will become saw-toothed with the peaks corresponding to the original positions 
of maximum pressure. The waves cannot spread because the shoclfs have the same pressures and there- 
fore travel at the same velocity. 

Similar developments coula D e  carried out for the time required for D to overtake B. The time for 

In the case of a periodic wave, the wavelength remains invariant. However, if the wave is 

Decay of Shock Waves 

Next we can consider the decay of shock waves from two different standpoints. The first makes use 
of this semiacoustical method and the second makes use of thermodynamical arguments. Both lead tn 
the same results. Consider a shock wave as shown in Fig. 20. If the peak pressure is p2, the velocity 
of the shock front is given by Eq. 242 

P -P 2 Y + l  2 1 
" z = c l + * F (  P1 ) (336) 
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Here w is a property of a wavelet which may be superposed on the main pulse at any instant (see 
Eq. 326). 

( a )  
p + l  iq'". 
p, R: Rc 

r- 

Figure 20 

The time required for a shock wave to go from R1 to R is then given'by the equation 

(337) 

The time required for the overtaking wavelet to reach R from its initial position R i  is 

(339) 

When t is small, the overtaking wavelets come from positions R i  close to R1; R--en t -2 - age ,  R is 
sufficiently large compared to the wavelength that the difference between R i  and R1 is negligible. Thus 
we can always neglect the difference between R1 and R i  and equate the travel times of the shock wave 
and the overtaking wavelet. This shows the type of approximations which are inherent in this method. 
The distances between various parts of the pulse are supposed to be small compared to the distance 
to the center. This i s  usually a good approximation in the case of a blast wave from a high-explosive 
charge but it would not be a good approximation i n  the case of a slow gas explosion. 

= 2w ln(WR1) (for q = 3) 

Taking the derivative of both sides of this equation 

(341) 

i 

..:> 
. -  
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rr 
5 

L 

e* - 0R-l = 2 ln(R/R1) dw/dR - 2wR-1 (for q = 3) . 0 , .  

r from which it follows that 
,. P 7 

. .  

' I .  

i .  - 

d In w 
d In R 
-- - - C1/2) [In (R/R1] (for q = 3) 

Thus for values of R large compared to R1, 
$ 2  - Y  

0 ld-R -(3-''4 (for q < 3) 

'$ ~ 

(for q = 3) 
1 W -  

. (In R)1/2 

(344) 

(345) 

But right behind the shock front, the overpressure p2 -p1 is given by the equation (from Eqs. 242 and 
243) 

so that at large distances 

* (P2 - P1)/P1- ~ - ( q + l ) / ~  (for q < 3)  (347) 

e- -1/R(ln R1112 (for q = 3) (348) ., * . 
h 

Q distances so that D +  

For q > 3, it is easily shown that o at the shock front reaches a finite asymptotic value at large 

-,> * 
4 ,  -2 

(p2 - pl)/pl - R-(q-1)/2 (for q > 3) (349) 

The decay of the shock pressure is, of course, faster for higher number of dimensions, q, for 
purely geometrical reasons. However, while shock waves in more than three dimensions would decay 
just according to acoustic theory, they decay faster than acoustic waves for q S 3. For q = 3, the 
difference is only the slowly varying factor C R .  For two dimensions, the decay of a shock wave is 
as R-3/4 while acoustic waves decay only as R-1/2; for one dimension, an acoustic wave would retain 
its amplitude but a shock wave decays as R-li2. 

The three-dimensional shock waves produced by explosions s tar t  with little similarity to the 
sinusoidal wave illustrated in Fig. 19. In the region of practical interest, there is a sharp positive 
pulse followed by a long negative pulse. To a fair degree of accuracy, experimental results on three- 
dimensional shock waves in air can be represented at any time by the equation % 

where R is the position of the front, r is the position at which the pressure is observed, and L' a half 
wavelength which depends mainly on the explosive energy. Equation 350 is empirically a much better 
representation of the pressure distribution than the linear relation between p - p1 and r which would 
follow from our quasi-acoustic theory. 

c 
, A  

-%a -t 
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Relation Between Duration of Pulse and Front Pressure 

From our theory we can obtain a useful relation between the length of a shock pulse and- the peak 
pressure (see Fig. 19). Let us consider the region between 0 and A separately from the region between 
D and 0 because the wavelet emitted from 0 always maintains a pressure of p1 and no energy flows from 
the region behind 0 into the region in front of 0. W e  shall suppose that LO is the distance between 0 and 
A at the time t = 0 and L is the distance at any subsequent time. In accordance with the semiacoustic 
theory, we assume the pressure, p, at any point in the shock wave to be linear with distance from the 
shock front, Le., we take 

- 

P - P1 = (P2 - PI) (L - €2 + r ) /L (351) 

In the time t, the point 0 moves a distance Ro given by the equation 

Ro = c1 t 

And in this time in which the shock wave moves from R1 to R is given by the equation 

But for very large values of R such that RL is negligible compared to R (see Eq. 340) 

(354) 

Therefore the length of the wave becomes 

(356) 

For large R, we may neglect LO, if at the same time we express w in terms of the front pressure from 
Eq. 346, we get 

Thus the half wavelength, L, varies approximately a s  the distance traveled, R, times the ratio of the 
overpressure, pa - pi ,  to the initial pressure, p1. If we take into account the behavior of the pressure 
from Eq. 347, we find that the wave spreads so that 

For q = 3, we get, corresponding to Eqs. 356 and 357 

L = Lo + y+l In (R/R1) - (e) (y) R In (R/R1) (q = 3) ( I C 1  
(359) 

.- 
. .  s7 
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At  sufficiently large values of R, taking into account the fact that the front pressure is nearly inversely 
proportional to R, this may be written as 

P2 - P1 
L = 0.86 R (--p~-) 1n [ ~ 1 / @ 2  - pi)] 

For large distances we may use Eq. 348 and find s.- 
L (362) 
= .  . -  

-f - L- CR -&n [1/@2 - ~111 

Thus the three-dimensional waves spread slowly. 
Experimentally, the positive impulse is frequently measured, 

- 
u 
J 

b 
-. .? 

. -  

Here the integration is only to be taken over that part of the pulse where p - pi  is positive. For the 
linear relation (Eq. 351) between p and R - r, since R - r = clt. 

(364) 

The energy of the shock wave as it passes R may be written I 

n J  

(365) 

And.since from Eq. 328 

It follows that 

Thus for the linear relation (Eq. 351) between p and R - r, 

From the fundamental notions of energy dissipation together with our previous dimensional analysis, .e 
we can obtain another relationship between the energy, distance, and front shock pressure which does 
not involve the wavelength or duration of the pulse. A s  we saw in Eq. 238, the energy dissipated when 
a blast wave passes through a unit volume of matter is p1 T1 AS. Thus for three-dimensional waves, 
when the shock wave expands from R to R + dR, and passes through a volume of 4nR2 dR, the energy, 
E, of the pulse is decreased by 4rR2 dR p1 T i  AS or 

dE/dR = - 4nR2pl T1 AS (3 68 1 



And since 

(369) 
r 4 .  y ’  

it follows from Eq. 73 that at the front shock 

+ 1 @2 - P1I2 

p1 J 

T1 AS=- 12Y2,, 2 

*. However, for a linear pulse there is both a front and a back shock wave of approximately the same 
- c  strength. Therefore the entropy change at the back shock wave is approximately the same as  at the <e: 

front shock wave and so altogether the change of energy of the pulse with distance becomes 

But from Eq. 348, for three-dimensional waves after a long time 

Here a is a constant. Thus 

Integrating 

After eliminating a 

(372) - 

(3.73 1 

Equation 374 is particularly useful because It shows how the energy in the shock wave varies with 
distance. It indicates a slow dissipation of energy, a phenomenon first pointed out by Penney?* F’urther- 
more the constant in this equation is somewhere between one-half and one-third of the original energy, 
EO, of the explosion. Assuming that it is one-third, 

(376) 

The energy is also expressed in terms of the half wavelength by Eq. 367. Solving Eqs. 367 and 375 for 
the half wavelength 

(377) 

*-.. 

.. 

- . . - . . .  
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This relationship is the same as Eq. 360 which we obtained previously on purely kinematic considera; 
tions. This shows that in the limit of large distances, the kinematic treatment is consistent with the 
energy relations. However, there is considerable danger of using the energy relations for moderate 
pressures where the pulse has not yet reached its limiting linear form. For example, in this region of 
interest, the pulse has more nearly the semiempirical form of Eq. 350 and the back shock has not yet 
developed. Under these conditions, the energy dissipated is one-half that of the linear pulse (for the 
same front shock pressure) and in the relation between energy and peak pressure, Eq. 375, the numeri- 
cal coefficient is one-half as large. 

Relation between Peak Pressure, Wavelength, and Energy 

In order to get a practical relation between the various quantities characterizing a shock wave 
originating from an explosion, it is indicated to use the semiempirical shape of the pressure pulse, 
Eq. 350, which is found to represent fairly well the pressure as a function of time at moderate pres- 
sures (of the order of 0.1 atm). The main characteristics of this pressure pulse are: (1) It has a 
positive pressure pulse of relatively short duration and lower pressure and (2) The total impulse, 
/ p  dt, is zero. 

These two features of the pressure distribution can be made plausible. PenneyI4 has shown that 
the impulse, / p  dt, must go to zero compared to pL’/cl as  the wave progresses outward. This follows 
simply from energy conservation. As regards the shape of the wave, the positive pulse including the 
shock is formed immediately by the explosion; it is therefore originally quite short. The negative 
pulse front is formed rather late” in order to fulfill condition 2 above. At the time of formation, the nega- 
tive pulse involves smaller deviation from the normal pressure p1 than the positive pulse, and this 
feature is preserved down to moderate pressures. Moreover, at the time of formation of the negative 
pulse and spatial dimensions of the shock wave are quite large so that the initial length of the negative 
pulse is much longer than of the positive one. The back shock wave develops only very late and is ex- 
tremely small in the region of moderate pressures; it is, therefore, not taken into account at all in the 
wave shape Eq. 350. These arguments a re  meant to explain only the qualitative features of the wave 
shape Eq. 350; the actual analytical expression is simply a convenient way to represent a wave of these 

“b 
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G, properties. 
The problem now arises how to connect the wavelength L‘ with the wavelength L of- the kinematic 

theory. L’, j u s t  as L, represents the length of the positive pressure pulse. We have already pointed 
out that the original length, SO of the positive pressure pulse, is likely to be quite small. Moreover, 

is indicated by the second term of Eq. 360. This is due to the fact that the end of the positive pressure 
pulse (point 0 in Fig. 19) actually moves with greater velocity than the unperturbed sound velocity c1. 
The velocity of this point is c + u. With the pressure equal to p1, the sound velocity c = c1. However, 
the material velocity u is not equal to zero due to the afterflow (terms of l/r2) which have been 
neglected in our semiacoustical theory. These afterflow terms are  absent at the shock front; therefore 
the propagation velocity of the shock front is j u s t  as we have assumed, whereas the propagation velocity 
of point 0 is greater than assumed. This means that the second term in Eq. 360 should actually be less. 
We believe that it is a good approximation to cancel this correction against the initial wavelength Lo, 
and therefore to identify L‘ with the value L given in Eq. 377. 

5- 
e it is easy to see that the contribution of the spreading of the wave is actually somewhat smaller than 
5;. 
2 -  

If we substitute the semiempirical shape of the pulse (Eq. 350) into Eq. 367 and perform the indi- 

4 c 
Q 

cated integration we get 

But after identifying L’ with L in the kinematic treatment we have by Eq. 360 

(367) 

’ (378) 
. I  
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I Eliminating L’ from Eqs. 377 and 378 

And making use of Eq. 376 for the energy 

2 ’ 

If R is measured in meters, y = 1.4, Eo is in equivalent tons of TNT and p1 is one bar (or atmosphere) 

(381) R (y) i l n  [~1/(P2 - PI)] = 19 Eo 1/3 

and from Eq. 378 

These relations are extremely useful for practical considerations of blast at moderate to long distances 
where the similarity solutions fail. 

impulse 
When we substitute the semiempirical shape of pulse (Eq. 350) into Eq. 363 we get for the positive 

I 

(383) 

The “effective length” of the pulse is defined as I cl/(p2 - pi). Thus the effective length of the pulse is 
L’/e = 0.368 L. 
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